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THE COMPLEXITY OF MANY FACES IN ARRANGEMENTS

OF LINES AND OF SEGMENTS^

Herbert Edelsbrunner , Leonidas J. Guibas and Micha Sharir"*

Abstract. We show that the total number of edges of m faces of an

arrangement of n lines in the plane is 0(m ' ~ n ' ^ +n), for any (5>0.

The proof takes an algorithmic approach, that is, we describe an algorithm

for the calculation of these m faces and derive the upper bound from the

analysis of the algorithm. The algorithm uses randomization and, with high

probability, its time complexity is 0(m'^'^~ ra^' logn+nlognlogm). If

instead of lines we have an arrangement of n line segments, then the max-

imum number of edges of m faces is 0{m'^'^~ n +na(n)logm), for any

(5>0, where o.[n) is the functional inverse of Ackermann's function. We give

a (randomized) algorithm that produces these faces and, with high probabil-

ity, takes time 0(m^' ~ n"'"'*^ logn -(- nQ(n)log^nlogm).
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divide-and-conquer, partition trees, randomized algorithms.
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1. Introduction

Let L ={/j,/2,...,/n } b^ ^ finite set of lines in the plane. L induces a partition of the

plane, known as the arrangement A{L) of L, into O(n^) faces, edges, and vertices.

The vertices are the points of intersection of the lines in L, the edges are the con-

nected components of the lines after removing the vertices, and the faces are the (con-

vex) connected components of the complement of the union of the lines /, (see [Gr; or

[Ed] for more details concerning arrangements in the plane and in higher dimensions).

Many combinatorial properties of arrangements of lines have been studied exten-

sively. In this paper we consider the maximum number, K[m,n), of edges bounding

m distinct faces in an arrangement of n lines in the plane (where we count an edge

twice if it bounds two of these faces). Note that m can vary between 1 and

K(n) = (-)+n-f 1, and that at these extreme values we have K{l,n) = n and

A'(/c(n),n) =2n' (there are altogether n" edges in the arrangement and each edge

bounds two faces). A trivial upper bound for K{m,n) is mn and a trivial lower

bound is m. Prior to this and a companion paper [CEGSWl, the best known bounds

on K{m,n) for general values of m were

[Cal,(i) K{m.n) = n+4Cp for m >2 and n >4(2)

(ii) A'(m,n) = 0(mn'/2) for cn^/2<^ [g^r^

(ill) K{m,n)=0{m^''\) [EWi, and

(iv) A:(m,n) = n(m2/3n2/3)
^

;EW!

(see also [Ed, chapter 6 ). Note that each of the upper bounds has a different range of

values of m for which it is better than the other (or the trivial) bounds. A graph
showing these upper and lower bounds on a logarithmic scale is given in Figure 1.1.

c



In this paper we improve the upper bounds by showing that

for any positive 6 (with the constant of proportionality depending on Sy. In particu-

lar, when m = n we obtain

K{n,n) = 0{n^/^^^)

for any 6>0. Our bound almost matches the lower bound K{m,n) = ri{m'^' n '

)

obtained by Edelsbrunner and Welz! [EWj. We mention that our upper bound is

almost the same as the upper bound due to Szemeredi and Trotter [ST! on the max-

imum number of incidences between m points and n lines.

Our approach to the combinatorial problem is different from previous work on

this problem in that it has an algorithmic flavor. We obtain an algorithm for the cal-

culation of m faces in an arrangement of n lines, where each face is designated by

specifying an arbitrary interior point in it. In other words, we consider n lines,

/j,/2, ...,/„, and m points, p,,P2,...,p^, in the plane, and calculate the faces of the

arrangement that contain the given points (see Figure 1.2; for reasons that will

become clear later we allow more than one point designating a single face). We con-

struct these faces using the following divide-and-conquer strategy which mimics the

construction of and search in a so-called partition tree which is a data structure

designed for half-plane or triangle range queries (see EW2 and HW ). It will be

convenient to describe this tree in dual space although it is possible to find a fairly

natural interpretation of it also in primal space. For this reason, we dualize the

points and lines and thus obtain lines p,
* and points /,

* in the dual plane. Those

lines will be referred to as dual lines and the points will be called dual points. The
tree that we construct can be interpreted in two different ways. Thinking of the dual

Figure 1.2. Points designate desired faces.

With some effort, one can determine for each m and n the optimal choice of c, and thus obtain a

somewhat tighter bound for A'(m,n).



points as data and the dual lines as queries, we obtain a partition of the set of points

into disjoint subsets, according to some underlying convex decomposition of the plane;

this is similar to standard partition trees [EW2I, [H\Vi, except that we use the a priori

given query dual lines to form the partition, thus making the tree "customized" and

easier to search. An alternative point of view is to think of the dual lines as the data

and the dual points as the query objects. In this interpretation, the partition tree that

we build differs from standard partition trees in two important aspects — it uses

superlinear space since it duplicates data, and is again "customized" for the query

objects (the dual points). In particular, we use a stopping rule based on the relation

between the num.bers of points and lines at any node which decides whether or not

the tree is continued below this node. Whichever point of view we take, it is impor-

tant to keep in mind that both data and queries are available in advance, and that

the tree is a function of both. Since the tree may have superlinear size, we will not

attempt to really construct it but rather traverse it and build and destroy its nodes as

we go. Indeed, the partition tree can be seen as a materialization of the algorithm

and exists only on a conceptual level.

Of course, what we want to achieve is the calculation of the faces containing each

of the given points, rather than processing half-plane range queries. However, the

two problems turn out to have a lot in common, so that they are both amenable to

the partition tree technique. Nevertheless, the two problems require different actions

when it comes to combining information from the children of a node to produce the

output at that node. This is a fairly trivial step in range searching but requires some
sophisticated machinery in our case. Specifically, for a node v of our tree and for

each (primal) point p that reaches that node, we want to construct the face in the

arrangement of the (primal) lines that reach v. This is accomplished by combining

the faces containing p in each of the subarrangements corresponding to the children

of V. A major tool that we develop for this purpose is the so-called "combination

lemma" which gives a tight upper bound on the maximum combinatorial complexity^

of the desired faces in terms of the combinatorial complexity of the corresponding

faces in the subarrangements (see Lemma 1). We expect this result to have applica-

tions to other problems as w^ll.

To re-iterate, we present a technique for constructing a partition tree for a set of

"data" points and a predetermined set of "query" lines. Such a tree can then be used

(a) to obtain better bounds for batched half-plane range searching

when the queries are known in advance (applications include calculating the

"signature" of a polygonal curve OR], multiple ray-tracing ^SMLj, etc.),

(b) to obtain our bounds on the complexity of many faces in arrange-

ments of lines (or of line segments, as studied in Sections 4 through 7), and

(c) in many other applications of a similar nature, such as reporting or

We use the term "combinatorial complexity" and sometimes just "complexity" for the number of

edges bounding some collection of faces.



counting the intersections between n given line segments (see [GOS;).

In our present application, the desired upper bound on K{m,n) is obtained by analyz-

ing the space complexity of the resulting algorithm. The time complexity of the algo-

rithm is roughly a poly logarithmic factor times the upper bound on K{m,n) men-

tioned above (see Section 3 for a more precise bound). The algorithm is based on a

random sampling technique akin to the f-net method of Haussler and Welzl [HW^ and

to the random sampling method of Clarkson [CI]. We obtain a randomized algorithm

which always terminates and produces the desired output and which, with high pro-

bability, does so within the stated time bound.

Next we consider the problem of estimating the maximum number of edges

bounding m faces in an arrangement A of n line segments in the plane, and of calcu-

lating these faces. This problem is considerably more difficult than for lines, because

the faces of A are not necessarily convex or simply connected. This makes it harder

to process such faces efficiently. Nevertheless, using an intricate extension of our

combination lemma (see Lemma 5), we obtain essentially the same bound on the max-

imum complexity, R{m,n), of m distinct faces in an arrangement of n line segments.

More precisely, we prove

R(m,n) = 0(m2/^-*n2/^*" + na(n)logm)

for any (5>0, where a(n) is the extremely slowly growing inverse of Ackermann's

function. To the best of our knowledge this is the first non-trivial upper bound

known for R{m,n). Note that this upper bound almost matches the above mentioned

lower bound on K(m,n). Since trivially K{m,n)<.R{m,n) this implies that our

upper bound on R(m,n) is almost tight.

From a high-level point of view the algorithms for the calculation of the desired

faces in arrangements of lines and of line segments are quite similar. Both algorithms

employ a key procedure for the following problem:

given a collection of k points and the faces containing them in each of two

subarrangements of the given lines or line segments, calculate the faces con-

taining these points in the arrangement formed by the union (that is, over-

lay) of the two subarrangements.

In the case of lines this is easy to achieve efficiently because each face is convex. In

the case of line segments this is more difficult because of the potentially highly irregu-

lar shapes of individual faces. We present an efficient line sweeping method for merg-

ing faces containing k given points in line segment arrangements whose complexity is

0{{t+k)\og{t-\-k)), where t is the total complexity of input and output faces. Apply-

ing this merge recursively, we can calculate the required faces in time which is within

a polylogarithmic factor of the bound on R{m,n). .An interesting consequence of our

merging procedure is that a single face in an arrangement of n line segments in the

plane can be constructed in time 0(na(n)log n). This problem arises in certain two-

dimensional motion planning problems in robotics, and has been previously studied in

|PSS:. A companion paper, [GSS , extends the line-sweep technique of this paper to



the calculation of a single face in arrangements of more general curves.

The technique used in this paper is one of several related approaches that were

developed recently, all of which use e-nets and random sampling as basic tools. This

paper uses 6-nets to partition the given lines (or line segments) into a fixed number of

(disjoint) subsets so that each subset interacts only with a relatively small number of

the given points. These interactions are taken care of recursively. In contrast, one

might try to partition the given points into (disjoint) subsets, each interacting with

only a small number of the given lines (or line segments). This alternative approach

has been studied in a companion paper [CEGSWj. It yields tight combinatorial

results for the case of lines, and can be used to obtain upper bounds for the complex-

ity of many faces, and for the total number of incidences with many points, in

arrangements of other types of curves, and also in arrangements in higher dimensions.

We call the approach followed in this paper dual while we refer to the approach in

[CEGSW as being primal. While the primal approach is mainly combinatorial, the

dual method yields efficient randomized algorithms. Another advantage of the dual

method over the primal is that it extends to line segments (which have not been

amenable to primal investigations yet). In addition, the dual approach has turned out

to be better than the primal one in analyzing the complexity of many cells in arrange-

ments of planes or hyperplanes, as is demonstrated in another companion paper

[EGSh|.

The paper is organized as follows. In Section 2 we analyze the combinatorial

complexity of many faces in an arrangement of lines. This analysis is explained in

terms of an algorithm that constructs the faces; its implementation is discussed in

Section 3. In Sections 4 and 5 we analyze the combinatorial complexity of many faces

in an arrangement of line segments, and in Sections 6 and 7 we discuss the implemen-

tation of the algorithm implicitly described in the combinatorial analysis. Concluding

remarks and open problems are given in Section 8.

2. The Complexity of Many Faces in an Arrangement of Lines

Let I ={/i,/2,. ..,/„} be a set of n lines in the plane, and let A =A{L) denote their

arrangement as defined in the introduction. Let pj,p2,...,p„ be m given points that

do not lie on any of these lines. Consider the problem of calculating all faces of .4.

that contain the points p^ producing each such face just once, even if it contains

several of these points (see Figure 1.2). We seek an algorithm for solving this problem

with a small worst-case space complexity. This space complexity will serve as an

upper bound on the maximum number of edges bounding any m faces in any

arrangement of n lines in the plane. As will turn out, the time complexity of our

(randomized) algorithm will be, with high probability, within a logn factor (and a

lognlogm factor if m =0(Vn)) of its worst-case space complexity, so we also get a

nearly time-optimal (although randomized) algorithm for the calculation of the faces.

We assume that initially no two of the given points lie in the same face of .4

.



The algorithm that we present below uses a divide-and-conquer approach and each

recursive step involves some subset L' of the lines /, and some subset P' of the points

p.. Since L' is only a subset of L it thus can happen that in the arrangement formed

by L' two or more points of P' fall into the same face. In this case we will want the

algorithm to maintain this face just once, and have pointers to it from each of the

goints contained in it. To reflect this potential duplication, we will denote by

K{m,n) the maximum complexity of the faces in an arrangement of n lines that con-

tain m given points (countjng each face just once). Aa opposed to K{m,n) which is

defined only if m </c(n), A'(m,n) is defined for all integers m >0, n >0. However,

when both functions are defined, we clearly have K{m,n)=K{m,n).

We next describe the algorithm for calculating the required faces. The discussion

will ignore implementation issues (addressed in Section 3) and instead concentrate on

combinatorial problems that arise.

First we dualize the lines /, to points /,
* and the points p, to lines p, *. This

gives a set L* of n points and a set P* of m lines in the dual plane. To process the

dual points and lines, we choose some constant integer r >0, and select a random
sample of r of the dual lines p^*. When we draw the arrangement of these lines in

the dual plane and triangulate each of the faces of this arrangement we obtain a total

of iV/=0(r") triangles. The 6-net theory of Haussler and Welzl [HWj or, alterna-

tively, the random sampling lemma of Clarkson [CI] imply that, with high probabil-

CTTl
ity, the interior of each of these triangles intersects at most logr dual lines, for

r

some constant c. We now build a partition tree, T, as follows. Each node of T is

associated with some subset of the dual points of L* and with some subset of the dual

lines of P*. Let t; be a node of T that is associated with L^*C.L* and P^*C.P*. The
points in L„* and the lines in P„* (as well as their primal counterparts) are said to

reach v. We take a random sample of r lines from P„ * and construct and triangulate

their arrangement. For each triangle J^, in this arrangement we form a child w of v

in T and associate with w the subset L^' of the dual points of L„* contained in A^
and the subset P^* of dual lines of P„* that intersect the interior of A^. (A

schematic representation of this process is shown in Figure 2.1; the arrangement is

formed by r=2 lines, thus it is not necessary to further decompose the four faces

which correspond to the four children of v.) In what follows we will denote the cardi-

nality of Z,„* by rip and the cardinality of P„* by m„^.

This process is continued recursively, but not all the way until just one or no
point or line remains. Whenever we reach a node t; of T for which m„ >«:(«„), we
slop the process and undo the dualization to obtain L^ from L^* and P„ from P„*.

Then we construct the arrangement A{L^) (in the primal plane), locate® in it each of

The reader is advised to note that we consistently use the letters L and n in association with the

primal lines (and therefore with the dual points) and that P and m are used in connection with primal

points (and thus dual lines).
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Figure 2.1. Partition tree and corresponding decomposition.

the points of P^,. and report the faces of A(Z.J that contain them, .\nother case

where we stop in the construction of 7 at node v is if F„* =0. In this case we do not

have to bother constructing A[L^'] since there are no points for which faces need to be

calculated.

During this process we construct the required collection of faces of A[L) as fol-

lows. For each node v of T and for each point p, reaching v during the above con-

struction, let Fp(p, ) denote the face of the arrangement A{L^) that contains p,

.

(Recall that such a face will be shared by all points reaching u that lie in it.) These

faces are constructed bottom-up as follows.

(i) .\s mentioned above, at each leaf u of T we either have m„ >K;{n^,

)

or mt,=0. In the first case we construct the entire arrangement of the n^,

corresponding lines r, locate in this arrangement each of the m„ points p, of

P„*, and collect the corresponding faces ft,(p,) (each face only once). The

total number of edges bounding these faces (which is proportional to the

space needed to store them) is at most 0{n^')=0[m^\ In passing we men-

tion that the time-complexity of this step is at most

0( n„^+m„ log nj,) = 0(mj, log rz„) using the arrangement construction algorithm

of EOS] and the optimal point location structure of [EGSt].

(ii) At each node v of T, compute Q„ =P^—P„, u the parent of v, and

let 6„ be the cardinality of Q^. Q^ is the set of points whose dual lines inter-

sect the interior of A^ but miss the interior of J^. By duality, each of these

points p, lies either above all the lines in L^ (in the topmost face F~ of

A{L^)) or below all of them (in the bottommost face F~). This is illustrated

in Figure 2.2. These two faces together have at most n^+2 edges, and they

can be constructed in time 0{njo%n^) (see e.g. PS). As required, we store

each of these two faces just once, and maintain a pointer from each point

^Locating a point in an arrangement means to find the face (or edge or vertex) of the arrangement

that contains the point. It is a fairly common term in computational geometry which, among other

things, considers data structures that facilitate fast point location queries (see e.g. EGSt ).
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Figure 2.2. Dual and primal plane.

p,GQ„ to either F^ or F^7 whichever contains it. We note that the topmost

and bottonimost faces in A{L^) must be constructed even if m„ =0 and we

stop the construction of the tree below v.

(iii) The general recursive step at any internal node i; of T proceeds as

follows. Let u-'i.u; 2,. ••'"-'.;/ ^^ the children of v (recall that M = 0(r^)). For

each point p, that reaches v (that is, its dual line intersects Z\„ and the tri-

angles of all ancestors of v) and for each child w of t;, either p, belongs to

Q^ or p, reaches w^, in which case the face F^{p,) containing p, has been

calculated recursively. Our task is now to take the M faces containing p,

(where each such face is either of the form F^{p,) or is one of F~ , F~_ asso-

ciated with Q^) and to form their intersection to obtain Fp(p, ). This inter-

section is clearly a convex polygon that contains p, and the number of its

edges is at most the sum of the number of edges of the intersected faces.

However, since some of the faces may be shared by other points, we

need to avoid duplicate processing and counting of the same face for each

point it contains, or else our algorithm might have unacceptably high time-

complexity and our upper bound on the total number of edges will be annoy-

ingly loose. A typical case where duplicate processing of this sort can slow-

down the algorithm is depicted in Figure 2.3.

A solution to this problem is provided by the following technical lemma, which we

refer to as the "combination lemma (for lines)".

Figure 2.3. Six faces designated by three points each.



Lemma 1. Let p^.p2,.--,Pk be points in the plane, and let {8^,82 B,} and

{Ri,R2,--Mt\ be collections of 5 "blue" and t "red" open convex polygons

that satisfy the following three conditions.

(i) The blue (red) polygons are pairwise disjoint and the total

number of blue (red) edges is P [p].

(ii) Each point p, is contained in a blue polygon B, and in a

red polygon R^

.

(iii) If for each 1 <»' <A: we define E, =B,nR{, then E^ i^Ej if

Then the total number of sides of the E^ is at most 3'\-p-\-Ak—2s—2t.

Proof. Take one of the blue polygons B =Bj, and suppose that it contains k^ points,

say pi,p2....,Pi • Each of these points p, lies in a different red polygon R( . We con-

sider the k. cells E, = BClRt, for 1<»^^, , which are convex polygons (see Figure

2.4). To give an upper bound on the number of blue edges of the £, we define for an

edge e of B the intersection of e with R^ and denote it by e,. Now write down the

cyclic sequence of the non-empty e, in clockwise order around the boundary, c'B , of

B. We observe the following two properties.

(i) The sequence of indices (red polygons intersecting c'B) contains no

cyclic scattered subsequence of the form i..j..i..j.

(ii) If two consecutive indices (red polygons) are the same, then the

edges of B in both elements are different.

To prove (i) just note that if such a case were to arise then we could connect the first

and third edges and the second and fourth edges by two straight segments lying

respectively inside the red convex polygons Rf and R^ . Both segments have their

endpoints on c'B which implies by the Jordan curve theorem that they intersect.

Figure 2.4. One blue and six red faces.
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This is a contradiction to R(r\Rt=0 if i =>^ j The claim (ii) follows from the fact

that a single edge of B intersects a red polygon in a connected piece - after all both

the blue edge and the red polygon are convex.

Ignoring repetitions of indices, (i) implies that the cyclic sequence is a

Davenport-Schinzel cycle of order 2 and thus consists of at most 2k^—2 edges (see

[ESj for details if at all necessary). By (ii), the number of index repetitions is at most

|B|, the number of edges of B. It follows that the £,, for I'^i^k^, have at most

|5|+2A:^-2 blue edges.

If we take the sum over all blue polygons we get at most 3+2k—2s blue edges

bounding the cells E,, for all i. By a symmetric argument we can show that the

number of red edges bounding the E, is at most p+2k—2t. It follows that the total

number of edges of the E^ (each edge either blue or red) is at most l3+p+Ak—2s—2t. D

By applying Lemma 1 a fixed number of times (A/— 1 times to be precise), it fol-

lows that the overall complexity, K^, of all faces F^(p,) constructed at v can be

bounded from above by

M M M M
E(A' +(n +2)) + A/E4m,. = E (if +0(n )) +MS 0(m ),

;=1 ' ' ;=1 ;=1 ' ' ;=1 '

where K^ is the number of edges counted at u.' , and the second subterm of the first

M
sum arises from the faces F~ and F~ . But En =n and .V/E 0(m ) = 0(m ).

'

.
' •' '

•'"'

since r and thus M is a constant. We can thus rewrite the recurrence relation as

M
K, = E A' +0(m„+nj.

; = i

To solve this recurrence relation, let K{Tn,n) denote as above the maximum complex-

ity of the collection of faces that arise for m points in an arrangement of n lines.

Then we have

K{m,n) <
if m =0

am if m ^^(n)
M _
E A'(m,,n, )-f6m-|-6'n if m <K(n)

1 = 1

for some constants a,6.6'>0, where M, the m,, and the n, satisfy the following three

conditions (which are immediate from our construction)

M = 0{r% (I)

M
En, = n, and (II)

1 = 1
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for each : we have m, < logr, for some constant c >0. (Ill)

r

Under these constraints we have

Lemma 2. K{m,n)<Dm'^^^'^n^^^^'^^+Am+Bn\ogm, for any 6>0, where the

coefficients A,B,D depend on 6.

Proof. We first note that at each level of the recursion m decreases by a factor

n(

—

^—), for a constant r, and thus the recursion has only O(logm) levels. The sum
r

of the Mp, over all nodes v at the same recursion level, is clearly n, so that the total

contribution of the rightmost term, b'n^ls at most O(nlogm). We will thus ignore

this term in the recurrence relation for K and prove that the solution to the modified

recurrence satisfies K{m,n)<.Dm^'^~ n^'^^^ +Am, for any S>0.

Fix <5>0 and choose r=r(<5)>0 sufficiently large (how large will be apparent

from the analysis below). _
The bound is trivial for m =0. If m^K[n) then K{m,n)'^am plainly satisfies

the required inequality, assuming A >a. It follows that the bound is trivially true for

constant n since m </c(n) only if m is also at most a constant (we need this observa-

tion only for n <1). So suppose m </c(n). In this case

^ ^2/3-«^l/3+(J ^ ^2/3-f„2/3+2* /i:\m=7nm' ^ m ' n '
,

[ )

assuming n >2. By induction hypothesis we then have

_ M
K{m,n) < E(Z)m,2/3-\2/3+2*^Am,) + bm.

i-i

By properties (III) and (I) we have

^ ^ cMmlogr ^ . ,

Zj m, <- <- (c.rlogrjm,
1 = 1 r

for some constant Cj. Hence

_ ^
K{m,n) < Z)- E m,'/'-V^^^" + (Acirlogr +6)m.

1-1

Thus, using (*) and putting <f = Acjrlogr+i, we obtain

K{m,n) < D- E m.2/3-^V3+2* ^ ^;„2/3-*„2/3.2*

But

1=1 r 1=1

which, by the Holder-Minkowski inequality, does not exceed
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. cmlogr 2/3-iS^2/3-2i;^j-l/3-2i? ^ q
(logr)

2/3-i

.3i5

^2/3-i^2/3-2i

Hence

K{m,n) < D0{ (log'
\2/3-^

.3i
-) + d

^2/3-i„2/3+ 2(J

But since ^>0, it is clear that if r is chosen sufficiently large so that

(logr)
2/3-5

1

r3* ' "2) < —, say, and if D is taken to be sufficiently large so that0(

— >(f =Acirlogr+6, then the expression in the bracket will be less than or equal to

D, thus establishing the asserted inequality.

Theorem 3. The total number of edges, A'(m,n), bounding m distinct faces in

an arrangement of n lines is at most 0{m '
~ n ' ^ +n), for any (5>0

(where the constants of proportionality depend on S).

Proof. Recall that when both functions are defined, we have K{Tn,n) = K{m,n).

For m <n ' the asserted bound follows immediately from the results of jCa men-

tioned in the introduction. For n^' <m</c(n) it is easily checked that the term

0(m '
~ n'' "

) dominates 0(m) and O(nlogm) in the bound of Lemma 2.

Remarks. (1) The preceding bounds imply that K{m,n) = 0(m '
~ n '

^^
) for any

(5>0, provided neither m nor n is too small.

(2) Our result leaves a small gap between our upper bound and the lower bound
of n(m ' n ' -j-n) obtained in [EW]. The primal approach as presented in a compan-

ion paper [CEGSW closes this gap and shows that 0(m ' n '^+n) is the real bound.

(3) A related result is that of Szemeredi and Trotter ST who give a tight

bound, Q{m'' n'' +n), on the maximum sum of the degrees of m vertices in an

arrangement of n lines. There does not appear to be an easy way to extend the proof

technique of [ST] to the case of faces.

3. Calculating Many Faces in an Arrangement of Lines

To complete our analysis of line arrangements, we turn to the implementation of the

algorithm outlined in Section 2 which constructs the faces in an arrangement of n

lines /|./o,...,/„ that contain m given points pj.p2,...,p^. Let T{m,n) denote the time

needed for this task using the approach described in Section 2. We have already

noted that at the bottom of the recursion we have T{m ,n) =0(m\ogn) if m ^^(n)
and r(m, n) = 0(nlogn) if m =0. Furthermore, the calculation of the two faces F~
and F~ at any node i' costs time 0(n„logn„).

As for the general merging step at some node t; of 7, let p-^,p2,---,Pm be the
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points whose dual lines reach v. For each p, we need to calculate the face F^{p,) of

the arrangement -4(LJ that contains p, ; this face is the intersection of the M faces

Fu,(p,), j = l.2,...,\f, where F^{p,) equals F^{p,) if P,
* reaches the child w^ of v, and

F^ (p, ) is F~ or F~ if Pi£Q^, Recall that a major technical difficulty in the

analysis of the space complexity of the algorithm, given in the preceding section, was

to avoid duplicate access to a face that is shared by several of the points. To over-

come this difficulty algorithmically, we proceed as follows. For expository reasons we

assume A/ = 2, so that we need to intersect only two faces around each p,.

(i) With each p, we associate the pair (/„,Jp,),f^^(p,)). Regard two

points as equivalent if they have the same associated pair of faces. The

equivalence classes can be constructed in time 0(mplogm„) = 0(m„logn^) by

sorting the face-pairs and removing repetitions. This also yields a represen-

tative point for each equivalence class; we need to calculate F^{p^) only for

these representative points.

(ii) For each representative point p,, we need to calculate the intersec-

tion, £, of the two convex polygons, B=F^[p^) and R =F^[p^), in time

that mainly depends on the number of edges of E. This is accomplished

using the following "ray-shooting" procedure. First we find a starting point

z on dE by shooting a horizontal ray from p^EE and finding the nearest of

its intersections with dB and JR. We next traverse the boundary of E in

counterclockwise direction from z as follows. Suppose we have reached some

point I on some edge e of dB. We shoot a ray from x along e (so that B
lies to the left of the ray) and find its intersection, x', with rJR. If e ends

before x', then we turn at the endpoint of e to the adjacent edge, c', along

dB and repeat shooting along e' towards dR. Otherwise, we turn at x' to

dR in counterclockwise direction, and shoot along the new edge towards dB.

Repeating this process, we will eventually return to z, thereby completely

tracing the boundary of dE . (Figure 3.1 illustrates this process.) Since both

faces, B and R , are convex each ray shooting query can be carried out in

time 0(logn„) (see ;CDj). Thus, the calculation of F^[p^) can be

Figure 3.1. Tracing the boundary of the intersection.
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accomplished in time 0(|i^„(p,)|lognj,), |F„(p,)| being the number of edges

bounding f„(p, ).

In general, that is, if .V/>2 we apply the merging process M—l times to take into

account all M children Wj of v. Since M is a constant depending only on r, the sam-

ple size, all faces F^{p^) can be obtained in time 0((A!'(m„,n„)+m„)logn„).

Finally, we consider the overhead of the top-down construction of the tree T. At

each node v we take a random sample of size r of the dual lines that reach t;, con-

struct and triangulate their arrangement, split the dual points among these triangles,

and determine for each triangle which of the mj, dual lines p, * it intersects. Each tri-

angle gives rise to a child of i; which is passed the points that fall into the triangle as

well as the lines that intersect it. Each step either takes constant (randomized) time

or time linear in n„ or m„.

We can therefore obtain the following recurrence formula for T{m,n), the time

needed for m points and n lines. For m <.n we have

M _
T{m.n) < S T{m,,n^) + 0{{K{Tn,n)+m+n)\ogn),

1 = 1

where the m, , the n, and M satisfy conditions (I) and (II) of the analysis in Section 2,

and, with high probability, also condition (III) (namely when the random sample is

indeed an £-net). For m^n we have

r(m,n) = O(mlogn),

and for m =0 we have

T{m,n) = O(nlogn).

Using the bounds on K[m,n) and K{m,n) obtained above, one can obtain the follow-

ing bound on T{m,n); the proof is a straightforward generalization of the proofs of

Lemma 2 and Theorem 3 and is left to the reader.

Theorem 4. The time complexity of the above randomized algorithm for com-

puting m distinct faces in an arrangement of n lines is, with high probabil-

ity, r(m,n)=0(m2''^"*n2/3-2*logn+nlognlogm), for any 6>0.

Remarks. (1) The algorithrn that we obtain is "Las Vegas" randomized since it

does not verify that the sample of lines chosen at any node of T in fact is an t-net.

Even if the sample is not an e-net, the algorithm will still run correctly, albeit poten-

tially more slowly. Thus the algorithm will always produce the correct output, and
with high probability will have time complexity as stated in Theorem 4. .\lterna-

tively, we could verify that the sample set is indeed an €-net thus obtaining a "Monte

Carlo" randomized algorithm. This can be done by constructing and triangulating

the arrangement of the sample lines and checking whether the number of lines cutting
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any one triangle is indeed sufficiently small. ^ This verification step clearly takes only

linear lime. We can now repeat the random selection until a satisfactory sample is

obtained.

(2) The combinatorial considerations in Section 2 can be viewed as analyzing the

space complexity of the Monte Carlo version of the algorithm (thus getting a worst-

case bound) or, alternatively, the most likely space complexity of the "Las Vegas"

version (thus getting a probabilistic bound). This does not mean, however, that the

Las Vegas algorithm takes more space in the worst case than in the most likely case -

only we did not prove that it does not. In fact, the worst-case space complexity of

the Las Vegas version depends on implementation details that we deliberately omit.

The issue here is how much of the partition tree we need to store at any point in

time. The best result is obtained if we use the partition tree only conceptually and

implement the algorithm as a traversal of the tree without ever building it.

(3) The ray shooting technique used in the above algorithm does not seem to

generalize to the more complicated task of constructing m faces in an arrangement of

n line segments, which is what we study in Sections 4 through 7. The alternative

merging technique that we use for line segments, described in Section 7, can also be

applied to the simpler case at hand. However, we have chosen to present here the ray

shooting technique because of its relative simplicity in the case of convex polygons.

4. The Complexity of Many Faces in an Arrangement of Line Segments

This section extends the analysis given in Section 2 to the case of line segment

arrangements, that is, we consider the problem of estimating the maximum combina-

torial complexity, R{Tn,n), of m faces in an arrangement of n line segments in the

plane. In contrast to the case of lines where all faces are convex, a face in a line seg-

ment arrangement is not necessarily convex and need not even be simply connected

(see Figure 4.1). Because of the non-convexity of faces, there is no reason why the

maximum number of edges bounding a single face should be at most n. Indeed, the

total number of edges bounding a single face can be as large as n(na(n)), where a(n)

is the inverse Ackermann's function, and this bound is tight in the worst case, as was
shown in [HS], [PSS , and [WSj. Lines are a special case of line segments, which

implies R{m,n)>K{m,n). Thus, the lower bound of [EW] for line arrangements

extends to line segments, that is, R (m ,n) = Q{m^^^n^^^).

In spite of the technical difficulties caused by the boundedness of line segments,

we will obtain an upper bound on R{m,n) that is roughly the same as the bound on

K(m,n) obtained in Section 2. Again, the bound will be derived from an analysis of

the space complexity of an algorithm for calculating m such faces. In Sections 6 and

A sample of lines is an £-net if every (open) triangle that avoids all lines is cut by at most some
number of the original lines. The verification step as outlined does not verify that this is true but for

our purposes it is enough that every triangle of the triangulation has the desired property.
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Figure 4.1. A face in a line segment arrangement.

7 we will show how to implement the algorithm so that the calculation of m faces in

an arrangement of n line segments takes time that is only slightly more than our

upper bound on R{m,n).

Let 5 = {5i,S2 s„} be a set of n line segments in the plane, and let A =A{S) be

their arrangement. Let P = {p^,P2,--.,Pm} be a set of points that we use to designate

faces of .4. and consider the problem of calculating the faces of A that contain the p,

.

Since we may reach a situation where a face of a subarrangement contains more than

one point, we use the auxiliary notation R{m,n) to denote the maximum complexity

of the faces in an arrangement of n segments that contain m given points (accounting

for each face only once). Clearly, R{m,n) = R[m,n) whenever both functions are

defined.

For each i let /, denote the line containing s, , and define Z, ={/, 1
1 < i < n }.

Apply the dual construction given in Section 2 to the lines in L and to the points in

P. Thus we recursively build a partition tree T each of whose nodes i' corresponds to

an open triangle A^ in the dual plane. Node v represents L„ which is the set of lines

in L whose dual points lie in A^ (and in all triangles corresponding to ancestors of v)

and Pp which is the set of points in P whose dual lines intersect A„ (and all triangles

corresponding to ancestors of v). Implicitly through L^, v also represents the set of

line segments Sj, ={s,
1 /, Gl,. }• Consistent with the notation in Section 2. we define

m„ = \P„\ and nt, = |5„j. When "ip >«;("„) we stop the construction of T below node

V, pass back to the primal plane, construct there the arrangement A(5„) of the n^

line segments s, in S^, , and collect the required faces of A(5j,) that contain the points

in P„. The space complexity of the entire ^(5;,), and thus also of the faces in ques-

tion, is 0{n^) = 0(m^,)}^ We also stop the construction of T below v if m,. =0. In this

'"Indeed, the number of vertices, edges, and faces of .4(5,) is proportional to the number of inter-

secting line segment pairs which is, of course, at most (
„°).
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case we construct the unbounded face of the associated line segment arrangement

from scratch (see Theorem 11). (Note that an important feature of the construction is

that in the dual plane we use the dual points /,
* of the (unbounded) lines /, . We thus

ignore the fact that we have to consider only the portions 5, of these lines. However,

when we pass back to the primal plane, we always process the line segments 5, rather

than the lines that contain them.)

We now proceed to the discussion of how the relevant faces of A{S^) are obtained

if mj,</c(np). As in the case of lines, we compute Q„=Pu—P„, u the parent of v.

This is the set of points whose dual lines reach u but miss A^. Every point in Q^
either lies above all lines in L„ or below all these lines. In any case, those points lie in

the unique unbounded face, F^, of ^(5^). As mentioned above, this face is bounded

by 0{n^a[n^)) edges. (If the given collection S contains also unbounded rays or lines.

we may have to consider two unbounded faces of A(Sp), as in the case of lines.)

The main difficulty lies of course in merging (or rather intersecting) the recur-

sively available faces of the children w^,W2,--.,Wf^ of v to get the desired faces at t;.

For a particular point, p^P^, this means that we construct F^{p) by intersecting the

faces F^{p) that contain p in the subarrangements associated with the children of v

{Pw{p) — Pw.{p) if P reaches w^ and F^{p) =F^ , otherwise). Our goal is to obtain

an appropriate generalization of the combination lemma for lines (Lemma 1) that will

enable us to bound in a similar manner the total complexity of the faces F^{p,). This

generalization is quite complicated and described in detail in the following section.

This section continues with explaining the result of this generalization and using it to

complete the combinatorial analysis of many faces in line segment arrangements.

For the remainder of this section (as well as for Sections 5, 6, and 7) we define a

polygon as an open region in the plane that can occur as a face in a line segment

arrangement. Thus, a polygon is neither necessarily convex nor simply connected.

The boundary of a polygon consists of one or more connected components called con-

tour cycles. We think of a contour cycle as a Jordan curve that may touch but can-

not cross itself. In particular, if an edge lies in the interior of the closure of the

polygon (it bounds the polygon on both sides), then the contour cycle has two parts

that touch along the edge (see Figure 4.1). When we count the number of edges of a

polygon we count each such edge portion twice. A vertex of the polygon is reflex if

the inside angle at this vertex exceeds 7r.'^ With these definitions we have the follow-

ing-generalization of Lemma 1 - the proof of this lemma, called the "combination

lemma for line segments", will be given in Section 5.

"For our purposes it suffices to assume that the line segments are in general position which,

among other things, means that no line segment contains an endpoint of another line segment. A
consequence of this assumption is that all reflex angles lie at endpoints of the line segments and the in-

side angle of every reflex vertex is 27t.
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Lemma 6. Let Pi,p2.---,Pk be points in the plane, and let {5^,52, ...,-6j} and

{/?i. fio, •••,/?( !• be collections of "blue" and "red" polygons that satisfy the

following three conditions.

(i) The blue (red) polygons are pairwise disjoint, the total

number of blue (red) edges is 3 {p), and the total number of reflex

vertices is r.

(ii) Each point p, is contained in a blue polygon B, and a red

polygon Rt-

(iii) If for each 1<«<A: we define £, to be the connected

component of B, HRi that contains p, (see Figure 5.3), then E^ =^Ej

Then the total number of edges of the £, is at most l3+p+0{k)+0{r).

Using Lemma 5, we can complete the analysis of the merge step at some node v

of tree 7. Applying Lemma 5 a constant number of times we conclude that the

overall complexity of the faces F„{p,) is at most the sum of the complexities of all the

faces /u;.(Pi)' « =l,2,...,m^, and j =l,2,...,M, plus 0{m^) + 0(r^), where r„ is the

number of reflex vertices in all faces FuiiPt)- But each such reflex vertex must be an

endpoint of one of the n„ segments in S^, so 0(r„) = 0(nt,). In addition to the com-

plexity of the recursively available faces F^, (p,) we need to take into account the total

number of edges bounding the unbounded faces F^ , which is at most

M
E 0{n a{n )) = 0{n,aM) •

j = i

We thus obtain the following recurrence formula for R{m,n).

R(m,n) <
if m =0

am if m >/c(n)

M _
E fi(m,,n,)+6m+6'na(n) if m <«;(n)

1

for some constants a,6,6'>0, where the m, , n, , and M satisfy the conditions (I)

through (III) stated in Section 2. A proof that is almost identical to the proof of

Lemma 2 (which is therefore omitted) implies the following solution of the recurrence

relation.

Lemma 8. R{m.n)<Dm'^^~W-^^"-^+Am+Bna{n)\ogm, for any 6>0. where

the coefficients A,B,D depend on 6.

Remark. A major feature of Lemma 5 (and of its simpler variant Lemma 1) Is that

the terms 3 and p appear with multiplicative constant 1 in the bound for the total

combinatorial complexity of the £",
. This ensures that the recurrence formula for
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_ Af _
R{m,n) given above involves the term S/?(m,,n,) with multiplicative constant 1.

1 = 1

This is essential for obtaining the bound stated in Lemma 6.

If m<A:(n) (that is, at most one point per face in the original arrangement is

specified), then

m ^ m n '
,

so that we can drop the second term from the bound in Lemma 6. We thus conclude

with the main result of this section.

Theorem 7. The maximum number of edges of m faces in an arrangement of n

line segments is

R{m,n) = 0{m^^^-U^^^^^^ + na{n)\ogm),

for any <5>0.

Remark. It is easy to check that R(m,n) = 0{m^' +na{n)\ogm), for any 6>0. also

satisfies the recurrence relation derived for R . This constitutes a weak generalization

of Canham's theorem :Ca; for lines to the case of line segments.

5. Proof of the Combination Lemma for Line Segments

In this section we provide a proof of Lemma 5. the combination lemma for line seg-

ments. This is the crucial lemma in the analysis of the complexity of many faces in a

line segment arrangement presented in Section 4. We proceed by considering the

interaction between a blue and a red polygon, a blue polygon and many red polygons,

and finally many blue and many red polygons. The results in this section have a

topological and combinatorial flavor and add up to a proof of Lemma 5.

The main concept in this section is that of a polygon which is defined general

enough so that every face in a line segment arrangement passes as a polygon. .\5

mentioned in Section 4, a polygon is thus connected but not necessarily simply con-

nected, and its boundary consists of connected components which we call contour

cycles. We can avoid the technical difficulty caused by the fact that a connected

component of the boundary need not be a simple Jordan curve, ^^ if we replace each

line segment by a rectangle of sufficiently small width. For small enough widths we

'*A (timplej Jordan curve has the property that every sufficiently small disk whose center lies on

the curve b cut into two connected components if we remove from it all points of the curve. This im-

plies that a Jordan curve is either unbounded at both ends or it is bounded in which case it is said to be

closed. \ connected piece of a Jordan curve is called a Jordan arc; it satisfies the same condition as the

Jordan curve except at its two endpoints at which removing the points of the arc leaves every small

enough disk connected.
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get the same intersection pattern for the rectangles as for the line segments, and a

face (a connected component of the plane minus the union of all rectangles) is now-

bounded by contour cycles that are simple Jordan curves. For technical reasons we

direct each contour cycle so that the polygon it bounds lies to its left. Thus, a con-

tour cycle that delimits a hole of the polygon is directed in clockwise order whereas

the outside contour cycle (if it exists) is directed in counterclockwise order.

Our first result is topological and asserts that the traversal of every contour cycle

of a connected component E of BDR, B a "blue" and R a "red" polygon, "agrees"

with the traversal of the contour cycles of B and R. By this we mean that the com-

mon points of a contour cycle of E and one of B (or R) are traversed in the same

order independent of whether we follow the contour cycle of E or that of B (or R).

Lemma 8. Let E, B, and R be polygons such that E is a connected component

of BnR, and let a,b,c be three points on tPI^, where 7 is a contour cycle of

E and ^ is a contour cycle of B. The order of points a,b,c along ^ is the

same as along -y.

Proof. Note first that the directions of 7 and ^ along common boundary pieces agree

since E and B lie on the same side of these pieces. Take ^, the contour cycle of B
that contains points a,b.c. and let ab ^, bc^, and ca^ be the pieces (Jordan arcs) of ^

from a to 6, from 6 to c , and from c to a. By assumption, points a,b,c belong also

to -7. If ab ^ is contained in -/ then the assertion is trivially true since the traversal

from a to 6 on 'v only passes points of abc, and c does not belong to abc- Otherwise,

aby the portion of t* leading from a to 6, contains pieces that do not belong to ^ -

these pieces are necessarily contained in the union of dR and dB—^ (see Figure 5.1).

Let 6 be such a piece, that is, 8 is a maximal connected component of ^—i, whose
starting point, 2, lies on ab ^. We prove below that the endpoint, w , o^ 6 lies also on

ab ^ which implies the lemma since we cannot reach any point of i—abc before passing

through b

.

Figure 5.1. Traversing the boundary of the intersection.
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Assume that w does not lie on ab ^. Let 6' be the portion of ^ leading from z to

w, including the endpoints (see Figure 5.2; note that 6' must contain b). By construc-

tion, 6 and 6' are disjoint and their union is a closed Jordan curve a. Let a' and b' be

two interior points of E that lie sufficiently close to a and b. It is thus possible to

connect a' and b' by a Jordan arc, a, that lies sufficiently close to ab c such that

Qn<5' = and a and 6 cross in a single point. Thus, a' and <>' lie in different com-

ponents of R^—a which is impossible since c is disjoint from E and E is connected

(see Figure 5.2). D

Remark. Lemma 8 expresses a consistency property of intersections of polygons.

Among other things it implies that if an edge e of fl (or /?, for that matter) contains

several edges of E then these edges appear in the same order along e and along the

relevant contour cycle of E.

Consider next a blue polygon B with i contour cycles ^i,^2v-mC^ and let

Pi,P2....,Pm be the points designating m desired regions contained in B. We let R, be

the red polygon that contains p, , for l<j<m, and we write E, for the connected

component of BHi?, that contains p, (see Figure 5.3). To be consistent with the

assumptions for Lemma 5 we allow /?, =/Z, but we assume that E^^E. if i =F j We
will analyze the blue boundary pieces of the E, by constructing a graph. Cg, and

proving certain properties about ^g. This graph will be instrumental in proving an

upper bound on the total number of blue edges bounding the Ej.

We need a few definitions. A blue boundary piece of E, is a connected component

of dE^ndB. Every blue boundary piece, 6, belongs to a contour cycle -y of some £,

and to a blue contour cycle ^, . Since contour cycles are directed, we can define a

predecessor and a successor of S in both cycles, which are the blue boundary pieces

immediately before and after 6 in ') and in ^, . Note that it is possible that the prede-

cessor (successor) of 6 in ) is the same as in ^. , but this is not necessarily the case.

Cq is a graph whose nodes are the points p^,p2,-.-,Pm and additional £ points

a = 6ij6'

Figure 5.2. An impossible configuration.
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arcs removed

in second step

'?i

Figure 5.3. The graph $g.

q^,q2,.--,qt so that (/, lies in the interior of the connected component of R —B
bounded by ^,; we denote this component by X,. For every blue boundary piece

6CdE^r\ij, l^'^'" and 1<;<^, we draw a curve connecting p, with qy This

curve, a plane embedding of an arc of Qq, connects an arbitrary point on 6 with p,

and q . Since 8 is part of the common boundary of E^ and X^ we can draw the curve

completely within E,UX^. The connectedness of each £, and X^ implies, by a conse-

quence of Schonfliefl' theorem 'Mo , that we can draw all such edges without any

crossings. Hence, q is planar.

The second step of the construction removes sufficiently many of the duplicate

arcs (connecting the same two points) so that we can apply Euler's relation to derive

an upper bound on the number of remaining arcs. Whenever two arcs of Qq connect

the same two points and they correspond to two blue boundary pieces such that one is

the successor of the other in both contour cycles, then we delete the successor arc. (In

the case that both blue boundary pieces are successors of each other, we make an

arbitrary decision to break the tie.) .\s a result of this deletion operation, every blue

boundary piece ^Cf', H^^ intersects an arc of ^5, unless there is another such piece

S'(ZE^^\^J that precedes 8 in both contour cycles. Note that the removal of arcs as

described does not eliminate all multiarcs but it guarantees that, barring one extreme

situation mentioned below, every region of the embedding of Cg is bounded by at

least four arcs, counting an arc twice if it lies in the closure of the region. The one

case where this does not hold is when Ug contains only two vertices and one connect-

ing (doubly counted) arc. This arises when B contains just one point p, . and the

corresponding E, uses only one contour cycle of B. In this case we can delete this arc

too. because it will not be used in the argument to follow. The factor "four" rather

than "three" which is typical for planar graph arguments can be used because Qq is

bipartite by definition and has therefore no odd cycles. Using Euler"s relation we
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derive that the number of remaining arcs is at most 2(m+£)—4 (also in the special

case mentioned above).

We are now ready to prove a strong variant of Lemma 5 stating that the k con-

nected components of the B,nRj, l^i^5 and 1<J<^, containing the k points

Pi,P2,.--iPa are bounded by a total of at most /3-|-/9+r+8fc+4£—16 edges, where

is the total number of (blue) edges of the 5,,

p is the total number of (red) edges of the Rj,

T is the total number of reflex vertices of the 5, and /2^, and

£ is the total number of contour cycles of the fi, and i?,.

Lemma 5 is implied because £<r+2A: (each B^ or R^ has at most one exterior contour

cycle, there are at most 2k blue and red polygons, and each interior contour cycle

must contain a reflex vertex), and thus Q-\-p-\-T-'r%k-\-A£—\^=(i-\-p-'rO[r)-\-0[k). In the

argument to come we traverse all blue (and symmetrically all red) contour cycles and

count the blue (red) edges of the E^, 1<»<A;, as we encounter them, by charging

them to various "'accounts". Note that a blue (red) edge can contain several such

edges. We define as the union of all graphs Qg and M as the union of all graphs

§ji defined symmetrically for all red polygons.

The easy case is if a blue (red) edge, e, contains at most one edge of all the E^ -

the appearance of this edge is accounted for by the term /3 (p) in the upper bound.

Otherwise, let e^ and 62 t)e two consecutive components of en( U ''^EA, and assume
l<i</k

that Cj is already accounted for. We assume e is blue.

(i) If e, and C2 do not lie on a common contour cycle of an E^ (and

thus belong to the boundaries of two different polygons E), then we charge

62 to the arc of Q that is induced by the blue boundary piece that contains

£2 (note that this arc cannot have been deleted from ^; see Figure 5.4(a)).

On the other hand, if Cj and 62 belong to a common contour cycle 7 of some E^, then

we distinguish two cases. Let '/g be the piece of 7 connecting the last point of e^ with

the first point of e2-

(ii) If 7q contains no blue boundary piece, then we charge ^2 to the

(first) reflex red vertex that lies on 7o - such a vertex must exist since, other-

. wise, we could not be led back to the same blue edge (see Figure 5.4(b)).

(iii) Otherwise, we charge e^ to the arc of ^ that is induced by the first

blue boundary piece on 70 (see Figure 5.4(c)).

It is easy to see that each reflex vertex is charged at most once. The definition of C,

guarantees that in each case where we charge ^ there is in fact an arc that takes the

charge. We now argue that the mechanism we use can charge an arc of Q at most
twice. In case (i) the arc takes the charge for an edge, e^' that is the first edge of the

corresponding blue boundary piece. Since every blue boundary piece has only one

first edge, this case can occur only once. In case (iii), the arc that takes the charge for



24

r^.^"-"'m,^

^^'^J ':

(a) Charging rule (i).

charged •" ^'/-r,^

(b) Charging rule (ii).

Figure 5.4.

• 9

(c) Charging rule (iii)

a pair of edges, e^ and 62- corresponds to a different blue contour cycle. However, e^.

the blue boundary piece 6 that corresponds to the charged arc, and 62 all belong to

the same contour cycle of some E,, and 6 is the first blue boundary piece that occurs

between e^ and 62 in this cycle. Clearly, it cannot be the first blue boundary piece

after a blue boundary piece other than that containing Cj, which implies that also this

case puts at most one charge onto any one arc. Thus, summing over all blue and red

edge duplications, we see that the total number of edges bounding the E,, l<i <k. is

at most

3+p+r plus twice the total number of arcs of $ and V.

The number of arcs of ^ and V is at most 4k+2£—4s—4t since every point p, is

counted twice (once for the blue and once for the red polygon that contains it). This

implies the claim and completes the proof of Lemma 5.

8. Calculating Many Faces in an Arrangement of Line Segments

We next turn to the task of calculating the faces in an arrangement of n line seg-

ments, Si,S2»---!'S„, that contain m given points, Pi,p2,...,p^. Generalizing the ray

shooting method used in Section 3 for line arrangements is problematic because it

would call for performing such ray shooting queries inside polygonal regions that are

not simply connected. No efficient technique for doing so is currently known. This

section presents an alternative approach based on the line sweeping technique (see e.g.

[PS|).

Consider the algorithmic issues that arise in efficiently implementing the algo-

rithm implicitly described in Sections 4 and 5. For any node v that satisfies

mt,>«;(n„) (thus, r corresponds to a call at the bottom of the recursion) we need to

calculate the entire arrangement of the n^, line segments in 5„, and extract from it the

faces containing the m^, points reaching v. Using the sweep algorithm in BO this

arrangement can be constructed in 0(n^rlognJ time, and the faces that contain the

m„ points can be identified in time O(m^logn^) using any of a number of efficient
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point location methods. Hence, such a node i' can be processed in time 0(m„logn^, ).

If m =0 (also this case corresponds to a call at the bottom of the recursion), the

unbounded face can be constructed in time 0(nlog"n) (see Theorem 11).

For an inner node v (that is, v corresponds to an intermediate recursive call) we

need to calculate the exterior face of A(5„) which contains the points in Q^ by defmi-

tion. This step of the computation will be described at the end of Section 7. It will

fall out as a special case of the general merge procedure described there.

As for the general merging step at v, let Pi,P2,.--iPm ^^ ^^^ points that reach v.

For each p, we need to calculate the face F„{pi) of the arrangement A(5„) that con-

tains p,. This face is the connected component containing p, of the intersection of the

M faces F^{p,), j = 1,2,...,M, where F^ {p,) = F^ [p,] if p, reaches the child Wj of v,

and F^ {p^) = F^ if p,€Q,i,,- -"Vs in Section 3, our goal is to construct these faces in

time that only depends on their total combinatorial complexity. Section 7 will

present a method, called the blue-red merge, that can be used to construct the f„(p,

)

within the desired time bound.

Let us be more specific about the blue-red merge. The input to this procedure is

a set of pairwise disjoint blue (and red) polygons bounded by a total number of 3 (p)

edges, and a set of k points each one inside some blue and some red polygon. The
output is the set of k polygons that are the connected components of the blue-red

intersections that contain the k points. The blue-red merge will construct the output

polygons in time 0{(f3+p+k)\og(3+p+k)) (see Theorem 10). To construct the fJp,

)

we apply the blue-red merge M—l times to the F^{p^), j =l,2,...,M. Using the

blue-red merge we will also be able to construct the unbounded face of a set of n line

segments in time 0(nQ(n)log n), and in time 0(na(n)logn) if we assume that it can

be constructed as a connected component of the intersection of a constant number of

precomputed unbounded faces (see Theorem 11 and the second remark following it).

The recursive processing of a node v in T thus consists of calculating the F^(Pt)

from the recursively computed faces of the subarrangements A{S^) as well as con-

structing the unbounded face, F^, of v. The time required to construct the

unbounded face is 0{n^a{n^)\ogn„) (see also Section 7). The amount of time required

at node v is thus

M _
EO((i?(m ,n )+m )logn ) + 0(n„a(nJlognJ =

= 0((fi(m„,nJ-fm„+n„Q(n„))lognJ.

Here we use the fact that the number of reflex vertices in the relevant faces is 0{n^) -

they must be endpoints of line segments in S„. In addition, we use Lemma 5 for each

of the XI— I blue-red merging steps to deduce that the output size of each merge is

linear in its input size. From this the above bound follows readily. We now put

everything together, taking also into account the probabilistic overhead of construct-

ing T (as in Section 3).
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Let T{m,n) denote the time needed by our algorithm to calculate the faces in an

arrangement of n line segments that contain m given points. If we assume that the

random samples that we draw are indeed £-nets (which is true with high probability)

we get the following recurrence relation for T{m,n).

r(m,n) = O(nlog^n) if m =0,

r(m,n) = O(mlogn) if m >«(«), and

M
r(m,n) < E r(m,,n,)+0((/?(m,n)+m+na(n))logn) if m </c(n),

t = i

where the m, , the n,, and M satisfy the conditions _[I) through (III) stated in the

analysis given in Section 2. Using the bounds on R{m,n) and R[m,n) obtained

above, one can easily obtain the following bound, in much the same way as in the

proofs of Lemma 2 and Theorem 3.

Theorem 9. The m faces designated by m points in an arrangement of n line

segments in the plane can be constructed in probabilistic time

r(m,n) = 0{m^^^-^n^^^^^%gn + na{n)\og\\ogm),

where 6 is any positive real number.

Remark. See the discussion on the probabilistic nature of our result at the end of

Section 3. The same remarks apply to the algorithm presented in this section.

7. The Blue-Red Merge

This section presents the details of the blue-red merge which computes the relevant

faces at a node v of T assuming that the faces at the M children of i; have already

been constructed recursively. As in Section 3 we assume M = 2, so that we need to

intersect only two faces around each point p,^P , l<i<A;. We are thus given two

collections of (not necessarily simply connected) open polygons in the plane,

{Bi,B2,---,B,} and {/?p/?2v-)^( /> the fl, are called the blue polygons and the R^ are

the red polygons. We can assume that any two blue (red) polygons are disjoint. See

Figure 7.1(a,b) for an illustration of this set-up. Let (3 and p denote the total number

of edges of the blue and red polygons, respectively.

Our goal is to calculate all polygons E,, where, for each PiEP , E, is the con-

nected component containing p, of the intersection of the red polygon and the blue

polygon that contain p,. The resulting E, are called the purple polygons, as each is

covered by a red and a blue polygon. Figure 7.1(c) shows the purple polygons that

arise from the blue and red polygons as well as the points shown in Figure 7.l(a.b).

.\s in Section 3. we do not exclude the possibility that E,=Ej for i=Fj- If tt is the

total number of purple edges, then n = 3n-p+0{k)-rO[r), by Lemma 5, where r is the



27

(a) The blue polygons.
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(b) The red polygons.

fake

lUJIUl'V - •

(c) The purple polygons.

Figure 7.1. Intersecting blue and red polygons.

total number of reflex blue and red vertices. Since r </3+p we have i: = 0[^+p-\-k).

To facilitate the nnerge, we require certain information to be precomputed and

available for each collection of polygons. Specifically, let Pg and P^j be the set of

reflex vertices of the blue and red polygons, respectively. We require that each blue

polygon B^ be subdivided into convex regions by drawing vertical rays from each

point p£{PUPb)^B, and stopping them as they encounter an edge of 5,; we call the

resulting vertical line segment through p the blue vertical divider of p, and denote it

by blue{p) (see Figure 7.1(a)). Symmetrically, we require that each red polygon is

decomposed into convex regions by red vertical dividers red{p), p^PUPji (see Figure

7.1(b)). These convex decompositions of the blue and red polygons will be available

recursively.

A particular convex blue (or red) region terminates on the left or the right either

(i) because of a point of P,

(ii) because of a blue (or red) reflex vertex, or

(iii) because of a locally i-extremal (non-reflex) vertex of the

corresponding polygon.

The blue-red merge will produce a similar decomposition of the purple polygons into

convex regions, which we call the purple regions.

We construct the purple regions by sweeping a vertical line across the plane. A
purple region starts (and ends) at

(i) a point of P,

(ii) a blue or red reflex vertex,

(iii) an x-extremal vertex of a blue or red polygon, or

(iv) the intersection of a blue and a red edge.
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In a left-to-right sweep we will discover the portion of each purple polygon that is to

the right of the leftmost point in P\JPq\JPji that lies in it. Afterwards, in a right-

to-left sweep, we will get the portion of each purple polygon to the left of the right-

most point in P\JPq\JPh that lies in the polygon. Together, the two sweeps discover

all edges of the purple polygons. In fact, the sweeps will construct slightly more than

the purple regions (the convex decomposition of the purple polygons) and we will

have to remove superfluous regions after the two sweeps (see Figure 7.1(c)). More

about this later.

We are now ready to describe the left-to-right sweep - the right-to-left sweep is

symmetric. We start by constructing a priority queue that stores PUPb^Pr ordered

by r-coordinates. This priority queue will be referred to as the event schedule. Dur-

ing the sweep we maintain separate data structures for the blue, red, and purple

regions. Thus, it is convenient to think of a blue, red, and purple plane swept simul-

taneously and independently. The main purpose of keeping the blue and red regions

separate is to avoid processing "uninteresting" blue-red intersections that do not con-

tribute to the boundary of a purple region. The only data structure that represents

blue, red, and purple data mixed together is the event schedule. The main part of the

blue-red merge is to detect intersections of blue and red edges that occur on the

boundary of a purple region. When such an intersection is detected it is added to the

event schedule and appropriate actions are taken to adjust the data structures sup-

porting the sweep.

Introduction of scouts. Each time a point p^PUPgUPji is encountered, we possi-

bly start one or two new purple regions in the purple plane. If pGP then it belongs

to a blue and a red region and we start one new purple region. If p is a reflex vertex

of a blue (red) polygon we check whether it lies inside a red (blue) polygon. If it does

not we simply discard it, and if it does we start two or one purple region(s) depending

on whether or not both incident edges of p lie to the right of the vertical line through

p. Whenever a new purple region is started we create two scouts, an upper and a

lower scout for the region. The job of the two scouts is to walk along the upper and
lower boundary of the new purple region and to look out for events to come which

might influence the shape of their region. The scouts always stay with the sweep line

and never stroll ahead or stay behind. We describe the way the upper scout of the

purple region does its job - the lower scout behaves symmetrically.

The upper scout, u, starts on the lowest blue or red edge above p, the point that

gives rise to the purple region at hand. If p£P then the edge is either the blue edge

that contains the upper endpoint of blue(p) or the red edge that contains the upper

endpoint of red{p). If p is a blue (red) reflex vertex, then we consult the data

Assuming that we deal with polygons bounded by simple Jordan curves there are exactly two
such edges. In our application, however, each reflex vertex b an endpoint of a line segment and thus

incident to only one edge. We treat the two sides of this edge as two edges. Thus, either "both in-

cident edges" are to the left or the right of the vertical line through the reflex vertex.
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structure that represents the red (blue) sweep to find the lowest red edge vertically

above p^* and we compare this edge with the blue (red) edge that contains the upper

endpoint of blue(p) {red{p)). The scout moves right along that edge following the

sweep line and it watches out for certain events that might influence the construction

of the purple boundary.

Without loss of generality, assume that u currently lies on a blue edge. Most

importantly, u looks up to the lowest red edge above - call it e^. Since u is a point of

a purple region, all points between u and e^ including u lie in the red polygon

bounded by e^. The reason for u's concern is that, at some future point in time, the

red boundary above u might drop below the blue boundary u is currently following.

If this indeed happens u will switch to the red boundary which then will delimit the

purple region. However, there might be another scout, v, already watching the same
red edge from below. In that case only the higher of u and v needs to watch e,. - the

other scout can rest, since it is protected by the other scout, who will have to warn it

in case the red boundary drops unexpectedly.

In more technical detail, "watching e/' means that u determines whether e^ and

Cj,, the edge it walks on, intersect to the right of the sweep line. If so it adds the

intersection point to the event schedule of the sweep. If such an intersection does not

exist and u reaches the right endpoint of e^ (or c,.) it continues walking on (watching)

the next blue (red) edge, if it exists. On the other hand, if ej and e^ intersect, then u

switches over to e,. when the sweep line passes the intersection. In this case, u starts

watching cj which is now the lowest blue edge above u. Of course, there is also the

case that the red boundary watched by u discontinuously changes at some point - in

this case u must look for a new assignment. Below, this case is treated in detail.

Another job of u is to watch its partner, the lower scout of the same purple

region. This is because when the two scouts meet then the purple region ends. Of
course, the region ends earlier if another point of P or a reflex vertex is encountered

between the two scouts.

Scout invariants. There are two key properties that are satisfied at any given time.

The first is that at any point in time each blue and each red edge is watched by at

most one upper or lower scout. Of course, the assignment of the scouts may change

and, over time, a single edge can be watched by many scouts. The second property is

that a blue edge is watched only by scouts that walk along red edges, and a red edge

is watched only by scouts walking along blue edges.

Changing assignments. Reassignments for scouts are necessary when new purple

regions start and old ones end. A purple region might end, for example, when its two
scouts meet. This occurs, for instance, when the rightmost vertex of a blue region lies

This data structure is a balanced tree that stores the red (blue) edges that currently intersect the

sweep line. Thus, logarithmic time (in the number of red (blue) edges) is sufficient to find the lowest

red (blue) edge above a given point. New edges can be added and old edges can be removed in loga-

rithmic time.
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inside a red region. In this event, the two purple scouts are dismissed. However,

some transfer of watching responsibility is indicated before the two scouts leave the

scene. If the dismissed upper scout, u, was watching a red edge, e^, then we must

check V, the next upper scout below u. If v is idle (this can only be because u pro-

tected t; from ej, then u takes over the responsibility to watch e^. If v is already

watching another red edge, then we leave it undisturbed as its red edge must lie below

The two scouts of a purple region also come together when a purple region ends

at the intersection of a red and a blue edge. Any reassignment of watching responsi-

bilities are handled as before.

If a purple region ends because of a point PjEPUPb^Pr that appears between

the scouts, then again the two scouts are dismissed. In this case, however, they will

generally be replaced by new scouts employed to guard the purple region(s) started at

the vertical divider of Pj

.

The reassignment of watching responsibility necessary when we sweep through

such a point Pj is done as follows. At the time p^ is encountered, one or two new-

purple regions are created. Suppose for simplicity that there is only one new region,

let u be its upper scout and assume that u starts out on a blue edge. First, u finds

the lowest red edge above it using the data structure that represents the sweep in the

red plane. Second, u consults the upper scout, w, immediately above and the upper

scout, V immediately below. If w is watching the same red edge as u then u forgets

about its assignment and becomes idle. Otherwise, u takes up its assignment and

checks whether v watches the same red edge. If yes, then v becomes idle. Similar

actions are taken when two new purple regions are spawned at p.

Finally, some transfer of watching responsibility may be required at a blue-red

crossing lying, say, on the upper boundary of some purple region. Suppose the

corresponding upper scout, u. walks along a blue edge, «;,, just before the intersection

occurs. To the right of the crossing u follows a red edge, e,.. As noted above, u now

starts watching Cj, but we also need to check the upper scout t; immediately below u,

who might want to start watching e^. Details are similar as in the cases considered

above.

Analyzing the blue—red sweep. The scouts simply trace the boundaries of the

purple regions. Each scout adds the intersections between blue and red edges that it

predicts to the event schedule. New events are added only when we sweep through a

point in P, through a blue vertex, through a red vertex, or through the intersection

between a blue and a red edge that is also a vertex of a purple region. Moreover, at

each such point only a constant number of additions of new events are made. Thus
the total number of events ever scheduled is proportional to the total input and out-

put size, which, by Lemma 5, is 0{3+p+k). The time to add or remove an entry to

or from the event schedule is logarithmic in its size which is thus 0{\o%(3+p^k)).

The additional operations involve updating the balanced trees that represent the blue,

red, and purple cross-sections along the sweep line, creating and dismissing scouts,

and reassigning watching responsibilities. It is plain that we need to perform only
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0{3+p+k) such operations, and that each one can be carried out in time

0{\og{J+p+k)).

There is a minor point to be clarified here: the algorithm constructs more than

only the '"true" purple regions (those that are connected by sequences of adjacencies

across vertical dividers to regions that contain points of P). Indeed it constructs all

connected components of the blue-red intersections that contain a point of P or a

reflex blue or red vertex (see for example Figure 7.1(c) which shows two purple faces

that contain no point of P). The construction of these additional faces seems neces-

sary since a genuine purple face can go back and forward in a serpentine-like fashion,

which makes it difficult for a sweep to capture its entire boundary unless it collects

various portions of the face in advance. Since the number of reflex vertices is at most

/3+p, this does not affect the asymptotic time-complexity of the above algorithm.

The final step now removes fake purple regions. This can be done by a simple graph

search in time proportional to the number of purple regions produced by the algo-

rithm, hence in time 0{f3->rp+k). Thus the blue-red merge takes time

0{{P+p+k)\og{(3+p+k)).

Theorem 10. Let the B^ [Rj) form a collection of pairwise disjoint blue (red)

polygons in the plane bounded by a total number of /3 (/>) edges, and let P
be a set of k points each contained in a blue and a red polygon. The con-

nected components of the intersections between the blue and the red

polygons that contain the given points can be constructed in time

0{{P+p+k)\og{Hp+k)).

We next show how to apply the blue-red merge to the calculation of a single

face, F, in an arrangement of a collection of n line segments, S = {si,S2,-.-,s„]. As

usual, F is assumed to be represented by a single point p contained in F. We now
employ a straightforward divide-and-conquer procedure (nothing like our present

intricate partition tree scheme).

Step 1. Partition 5 into subsets S^ and 52 of about half the size of S each.

Step 2. Calculate the faces Fj and F2 in the arrangements A(Si) and

A (52) that contain p.

Step 3. Apply the blue-red merge described above to f j, F2 and {p }.

By. the results of [PSS], we know that fj and fj together have 0(na(n)) edges.

Thus, by Theorem 10, Step 3 constructs F from Fi and F2 in time 0(nQ(n)logn).

We therefore get

T{n) =2T{n/2)+0{na{n]\ogn) = 0{na{n)\og'^n)

for the total amount of time required to construct F. We state this result as a

theorem.

Theorem 11. Any single face in an arrangement of n line segments in the plane
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can be calculated in tinie 0(na(n)log n).

Remarks. (1) Theorem 11 extends and simplifies previous results on constructing a

single face in a line segment arrangement obtained in ,PSS .

(2) In the construction of m faces in a line segment arrangement, we need

Theorem 11 for calculating the unbounded face, F^, in A{S^), for every node t; of T.

K V is an inner node, then we already have a constant number of unbounded faces

available such that Fj^ is the unbounded connected component of their intersection.

Hence, we do not have to pay for the recursive overhead (as in Theorem 11) which

gives us an 0{na{n)\ogn) time algorithm for constructing F^. No logn factor can be

saved if v is a leaf of the tree.

8. Discussion and Open Problems

In this paper we have obtained almost tight upper bounds for the maximum number

of edges bounding m faces in an arrangement of n lines or line segments. We also

presented efficient randomized algorithms for the calculation of these faces. The ran-

domized time-complexity of these algorithms is only slightly higher than the upper

bounds on the number of edges that are to be reported. The main technical tools

that we have introduced and used in our analysis are

(i) the construction of a customized partition tree for a set of n points

and m query lines, using a random sampling technique similar to those of

[HW| and [CI], and

(ii) the combination lemmas for faces in arrangements of lines and of

line segments.

This final section concludes with some comments on our techniques and states related

open problems.

The algorithm presented in Sections 2 and 3 and its analysis extend simpler tech-

niques, also based on range searching partitioning schemes, which have been recently

employed to solve other problems on the interaction between points and lines in the

plane. One such problem, originally posed by Hopcroft, is the following.

Given m points and n lines in the plane, determine whether any of the

points lies on any of the lines.

This problem was solved bv Cole, Sharir and Yap [CSYl in time approximately on the

order of m'^' n^'^ , where Q = log2 = 0.69424. They use a partitioning

scheme that is simpler than the one described in this paper. Later it was observed by

Edelsbrunner that a slight extension of the algorithm of [CSY] can be used to solve

the following problem.

Given m points and n lines in the plane, find for each point the line that lies
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vertically below it.

Since both problems are restricted cases of the problem studied in this paper, our

algorithm yields new and more efficient solutions to these simpler problems as well.

Note, however, that in these problems the output size is not a significant issue - the

first problem is just a decision problem and the output in the second problem has

only linear size. In contrast, for the problem studied in this paper the output size,

and thus the space- and time-complexity of the algorithm, can be forced to be super-

linear, that is, f2(m ' n ' ). An obvious open problem that arises is whether the two

simpler problems can be solved in o(m^/^n^'^) time. As will be shown elsewhere

[EGSh', the straightforward generalizations of the two problems to three dimensions

can indeed be solved faster than the problem of calculating the entire cells of the

arrangement containing the given points.

Our approach to calculating faces in arrangements is based on a dualization of

the problem which puts limits on its generality. Nevertheless, we could give an

equivalent description of our technique using only the primal plane. We thus draw a

random sample of r of the given points and then partition the lines into 0(r ) so-

called 3-corridors each being the primal equivalent of a triangle in the dual plane (see

[HW',). Each point is passed to all 3-corridors that contain it. It is an interesting

open problem whether or not this primal view of our technique can be generalized to

apply to arrangements of other curves such as circles and alike.

Another open problem is to obtain a deterministic and efficient algorithm that

will replace our randomized technique for computing faces in an arrangement of lines

or line segments. The best deterministic solution we have uses a variant of the conju-

gation tree technique of :EW2:, and takes time approximately on the order of
2q 1

n '^"^^ m ^'^
(see also Ed. chapter lOi).
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